The Closedness Subspace Method for Computing the Multiplicity Structure of a Polynomial System

نویسنده

  • ZHONGGANG ZENG
چکیده

The multiplicity structure of a polynomial system at an isolated zero is identified with the dual space consisting of differential functionals vanishing on the entire polynomial ideal. Algorithms have been developed for computing dual spaces as the kernels of Macaulay matrices. These previous algorithms face a formidable obstacle in handling Macaulay matrices whose dimensions grow rapidly when the problem size and the order of the differential functionals increase. This paper presents a new algorithm based on the closedness subspace strategy that substantially reduces the matrix sizes in computing the dual spaces, enabling the computation of multiplicity structures for large problems. Comparisons of timings and memory requirements demonstrate a substantial improvement in computational efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

An effective method for eigen-problem solution of fluid-structure systems

Efficient mode shape extraction of fluid-structure systems is of particular interest in engineering. An efficient modified version of unsymmetric Lanczos method is proposed in this paper. The original unsymmetric Lanczos method was applied to general form of unsymmetric matrices, while the proposed method is developed particularly for the fluid-structure matrices. The method provides us with si...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

Chapter 1 Regularization and Matrix Computation in Numerical Polynomial Algebra

Numerical polynomial algebra emerges as a growing field of study in recent years with a broad spectrum of applications and many robust algorithms. Among the challenges in solving polynomial algebra problems with floating-point arithmetic, difficulties frequently arise in regularizing ill-posedness and handling large matrices. We elaborate regularization principles for reformulating the illposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008